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A TECHNIQUE FOR IDENTIFYING PILOT DESCRIBING
FUNCTIONS FROM ROUTINE FLIGHT-TEST RECORDS
By Rodney C. Wingrove and Frederick G. Edwards

Ames Research Center

SUMMARY

Previous studies have shown that the dynamic response of the pilot can be
represented by a linear element (describing function) and a remnant term
(output noise). The previous work also has indicated that there is an error
in identifying the pilot describing function from routine tracking task
records because the output noise of the pilot transfers through the control
loop, producing an undesired correlation with his input signal. This report
shows that this correlation, and thus the identification error, can be
reduced by shifting the input signal during the computer processing an amount
equivalent to the effective time delay of the pilot. This report includes a
theoretical analysis of this technique and examples to illustrate its
application.

The theoretical analysis considers the fact that the computer processing
is constrained to identify only physically realizable systems. With this con-
straint, it is shown that the error in identifying the pilot describing func-
tion depends on the spectrum of the pilot's output noise; the identification
error can be made small if the noise is near '"white" in relation to the sum
of all effective time delays through the control loop (pilot plus controlled
element). This result is significant because, if these conditions are met,
it is possible to identify the describing function of the pilot in a feedback
system that is excited only by his output noise.

The identification of several simulated pilot models is included in this
study to illustrate this technique. Also, representative data from the retro-
fire phase of the Gemini X flight have been analyzed and are presented to
demonstrate the successful application of this technique with routine
spacecraft operating records.

INTRODUCTION

This report considers the problem of identifying the input-output rela-
tionship of the pilot by use of measured data from routine flight operations
in which the pilot provides feedback control. The problem in using the mea-
sured input and output data directly is that any extraneous output noise by
the pilot causes an error in identification. This problem is solved in this
report by the development of a computer processing technique that, under cer-
tain conditions, yields an estimate relatively free from identification error.



Since the identification of feedback control systems is important in many
fields, the technique has wide significance and applicability.

The input-output characteristic of a pilot must be regarded as random,
nonlinear, and dependent on the task he is to perform. Many previous studies
have shown that this type of response can be represented appropriately with a
quasi-linear system modeled by a linear element (describing function) and a
remnant term (output noise). The pilot describing functions usually have been
identified from records obtained in ground-based simulators (ref. 1) and
flight tests (ref. 2) wherein carefully controlled external forcing functions
are used to excite the pilot-vehicle system. The pilot describing functions
are measured by comparing the input and output signals of the pilot with the
known forcing function. This method minimizes those errors in identification
due to any correlation of the input signal with the pilot's output noise.
Reference 3 contains a good review of this previous work and summarizes the
measured pilot describing functions.

Most other methods for measuring pilot describing functions depend on
random disturbances (e.g., aerodynamic turbulence, propulsive disturbance,
etc.) to excite the pilot-vehicle system. These methods compute directly the
describing function of the pilot from his input and output signals. However,
there is a fundamental difficulty with these methods because the pilot's out-
put noise transmitted through the control loop produces an undesired correla-
tion between his input and output signals, thereby causing an error in
identification. In reference 4, the expected error is analyzed and it was
shown that if the amplitude of the pilot's noise is large, as compared with
the external disturbance, then the identification error is unacceptable.

During routine flight-test operations, there are no carefully controlled
forcing functions and even the random external disturbance may be quite small
so that the principal system excitation may come from the pilot's output
noise. This report shows that in such situations it may still be possible,
under certain reasonable conditions, to determine the pilot describing func-
tion without incurring an unacceptable identification error. One required
condition is that the pilot (or possibly the feedback control loop) have a
time delay. If this condition is met, it 1s possible to take advantage of
this fact in the identification data processing. In effect, the input signal
is shifted during processing by an amount equal to the time delay of the
pilot. Although previous studies (refs. 5-7) have considered the use of a
time shift in the measurement of pilot describing functions, it was apparently
not observed that this time shift would strongly influence the error in
identification.

This report presents a theoretical analysis to show that this technique
will reduce the identification error. The simulation and identification of
several known system elements are included to compare with the theory and to
illustrate the use of this technique. Also, results obtained from the retro-
fire phase of the Gemini X mission are presented to demonstrate the
application of this technique to routine flight-test records.
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NOTATION

controller deflection (output of pilot)
error signal (input to pilot)

Fourier transform of [ ]

external disturbance

constant gain

numerator terms in Y. (jw)

internal noise (pilot remnant)
cross-correlation function of e(t) and c(t)
cross-correlation function of e(t) and n(t)
autocorrelation function of e(t)
autocorrelation function of n(t)

time, sec

controlled element describing function
measured describing function (ideal)
measured describing function (actual)

pilot describing function

estimated pilot describing function
exponential decay factor, sec”!
residual

time shift used during analysis, sec
time delay in Y.(jw), sec

time delay in Yp(jw), sec

power spectrum of e(t)

power spectrum of n(t)

cross-power spectrum of e(t) and c(t)



Cepn (Gw) cross-power spectrum of e(t) and n(t)

® frequency, rad/sec
BACKGROUND

This section discusses the piloted control system elements and indicates
the error in identifying the pilot describing function from routine tracking
task records. A computing process for reducing this identification error is
then outlined. This background material precedes a more detailed analysis of
the identification error presented later in the report.

General Remarks

Figure 1 is a block diagram of the pilot in a compensatory tracking task
trying to control his output c(t) so that the input error signal e(t)

Controlled system

Figure 1.- Identification using standard measurement methods.

is kept near zero. Generally, the input-output characteristics of the pilot
must be considered as complex, nonlinear, and time varying. However, for the
purposes of modeling, it is common practice to assume that his characteristics
can be represented by a quasi-linear system (ref. 3). This mathematical model
contains the linear element Y, and the noise source n. The element Y (jw),
which is called the pilot describing function,! is a linear constant-
coefficient system with a frequency response dependent on the input e(t).
1Technically, Yp(jw) represents a random input describing function 7
because random, rather than sinusoidal, signals are used here (see ref. 3).
Also, to avoid additional notation, terms such as Y(jw) will be used to
represent both the transfer functions of linear systems and the describing

functions of nonlinear systems.
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The term n(t) represents the difference between output of the pilot, c(t),
and output of the describing function Y_(jw) driven by e(t). Thus n(t)
accounts for remnant terms such as nonlinearities, time variations, and
additive noise in the output of the pilot.

The controlled system is mathematically characterized by the constant
linear element Y. and the noise source i. The time history i(t) accounts
for nonlinearities and time variations in the controlled element, time-
varying commands, and all disturbances from aerodynamics, propulsion, etc.,
external to the pilot.

Identification Error Using Standard Methods

Several methods (e.g., refs. 4-10) have been used to compute, from given
records of e(t) and c(t), a describing function Ym(Jw) that represents the
best linear relationship between e(t) and c(t). Best here means that the
integral of the squared residual, fe?(t)dt, is minimized over a given record
length, where e(t) is the difference between the actual record c(t) and the
output of the system Yp(jw) excited by e(t). The measurements Yp(jw) may
differ somewhat between methods because each method uses slightly different
approximations and model forms in computer processing. Generally, the measure-
ments of Y (jw) will be near the following ideal describing function Yy (jw)
that represents the best linear relationship between e(t) and c(t) for random
stationary signals?

- Pac(Gw)
YnGw) ~ Yp(juw) = ———= (1)
e e e (@)

In this equation, &g.(jw) is the cross-power spectrum between e(t) and
c(t) and ¢ge(w) is the power density spectrum of e(t). In identifying the
pilot describing function with these types of methods, previous studies (e.g.,
refs. 4 and 9) have shown that there is a difference between the measured
describing function Y (jw) and the actual describing function Y (jw). This
difference, or ”1dent1f1cat10n error," can be shown by de11neat1ng the compo-
nents of the cross-power spectrum: ®ec(3w) = Yp (Gjw)oee (W) + ®en(jw). Sub-
stituting these components into equation (1) ylelds

9., (G0)
Pee (w)
[ —
error

Equation (2) shows that any cross-correlation &gp(jw) will contribute an
error in identification. Such a correlation does exist during closed-loop
control because n(t) transfers through Y. (jw) and thus appears as a compo-
nent of e(t). If n(t) is much smaller than i(t), the ratio dep(jw)/%ee(w)
will be small and the measured transfer function Yp(jw) will be near the true

Yy (Gu) = Yp(ju) + (2)

21f the measurement has the constraint to identify only physically real-
izable systems, then, as shall be pointed out later, Yy(jw) is written in a
slightly different form.




value Yp(jw). However, if n(t) is much larger than i(t), the ratio
Yen(jw)/dee(w) will be significant and the measured describing function

Y (Jw) will be very different from Y,(jw). For routine flight-test condi-
tions, where n(t) may be much larger than i(t), it is necessary to find some
means of reducing this error. Such a technique will be outlined next.

Use of a Time Shift in Identification

Previous studies (e.g., refs. 5-7) have considered the use of a time
shift during the computer processing to account for the effective time delay
of the pilot. This time shifting represents only a slight modification to the
identification methods in figure 1.

This time-shifting technique illustrated in figure 2 involves the follow-
ing steps in the computing process.

1. The input signal e(t) is shifted with respect to c(t) by an amount
A, where A 1is equivalent to the time delay of the piiot.

2. The describing function ?m(jw) is determined using the shifted data
from step (1).

3. The estimated transfer function is determined from the measured
transfer function as

|

= { — v,

- 4
|
-
Estimate ’Y\p

-
|
}; ». e—xlu
|
—_ e — — —_—

Figure 2.- The use of a time shift X in identification.

Although previous studies have considered this time-shifting technique,
it was apparently not observed that this technique would strongly influence
the errors in identification. This report shows that when this technique is
used with a measurement method in which Y, (jw) is constrained to be

6



physically realizable,3 then the identification error due to the correlation

of e(t) with n(t) can be reduced.

This reduction will be shown in the next

section where the identification error to be expected with this computing

process will be analyzed.

ANALYSIS OF IDENTIFICATION ERROR

The reduction of the identification error by the foregoing computer

processing will be illustrated from two points of view.
analysis will show why the time shift

First, a general
reduces the identification error.

The second analysis will develop equations to show, in more detail, the amount

the error is reduced.
domain.

The following analysis is presented using the frequency
A similar analysis is presented in appendix A using the time domain.

General Analysis

To illustrate the reduction in identification error, equation (1) is

rewritten as

¥nGw) ~ Y,Gw) =

FlRec()] [ Reo(m)e ™ ar

F[Ree(T)] B ‘J"m Ree(T)e_ij dt

(a) No time shift; x=0

Figure 3.- Effect of time shift on correlation
functions.

(3)

where F[Rgc(1)] represents the
Fourier transform of the cross-
correlation function Rgc(t) and
F[Rege(1)] represents the Fourier
transform of the autocorrelation
function Rg,(T). Representative
curves" of the measured quantities
Rec (1) and Rge(T) are sketched in
figure 3(a). The error contribution
Rgn (1), contained in Rec(t), is also
shown for comparison.

Now consider those measurement
methods that have the constraint of
physical realizability. These
methods used only data for positive
values of T, and, accordingly, the
measured transfer function is

3This constraint is inherent in the computer processing for most time-
domain measurement methods such as cross-correlation (refs. 4, 8, and 9),
orthogonal filters (refs. 4, 5, and 7), and parameter trackers (refs. 4, 6,

and 10).

Most frequency domain measuring methods using cross-spectral com-
puting programs (ref. 1) usually do not contain this constraint.

However,

such a constraint could probably be incorporated.
“These data are from example 1, which will be discussed later.



ImRec(T)eQTjw dt
Y (Gw) =% . (4)
LJRee(T)e‘TJw dt

and if the individual terms (see eq. (2)) are substituted for R (1),

_ [ Ren()e™ ™Y dr
Yp(u) = YpGu) + 3

- (5)
ORee(T)e B9 gr
—_
error
With this constraint, only that portion of Rg,(t) for positive values of =t
(shown by the shaded region in fig. 3(a)) contributes an error in
identification.

Let us next introduce the time shift A as presented in figure 2. This
time shift is applied so that the shifted input data are e'(t) = e(t - A).
The effect of this time shift is illustrated in figure 3(b) where the func-
tions Rerp{t), Rerc(t), and Rgrer (1)

| / \ resulting from the shifted input
/ R, () data are presented. It is shown
/’\\ Ryrgl?) \ that the addition of this time shift
/ \34/,\\ K/ AJéjﬁ\\\ causes the quantities Rgi1¢o(t), and
.4_3¢é§<:?\\ —~—& A S Re'n(t) to be shifted by the amount
" \ ( - / A with respect to Rgrer(t). Now it
\ RAQ\J/ is apparent that the error contribu-
i tion of Rgip(t)}, for the positive
\\/ values of 1, is reduced and
—4 N includes only the small shaded area

in figure 3(b). The actual value

{b) With hme shift \ -
for the error term is

Figure 3.- Concluded.

J Rern(m)e 7Y dr ] jo Rgp(t + Me ¥ dr

j Revev(T)e-TJm dt ImRee(T)e-TJw dt
0 0

(6)

In general, R,,(t) will decrease for positive values of 1. Therefore, note

that the error contribution f Ren(t + A)e_TJw dt will be reduced as A is
0

increased. Further, the error contribution will be zero if Rep(t) is zero
for values of 1 greater than A.

This general discussion has attempted to give some physical insight into
why the time shift X reduces the error in identification. We will now turn
our attention to a more detailed analysis to determine the amount the error
can be reduced.

8



Detailed Analysis

In this section, we will derive formulas that show the reduction in
identification error as a function of the primary variables within the control
loop. As noted earlier, we will consider the use of a time shift A in the
identification and consider measurement methods in which Yp(jw) is
constrained to be physically realizabla.

To mathematically represent a measured describing function ¥p(jw) that
is constrained to be physically realizable, we can utilize the relationship
used with the Wiener-Hopf equation (ref. 11). Using this relationship for
physically realizable systems, equation (1) is written

~ . . 1 Qec(jm)
Yn(Gw) = Yp(jw) =

Fa— S (7
Qee(Jw) Qee(Jw) +

where

bee () = 2go(jw)oae (ju)

@;e(jw) has poles or zeros only in the left-half plane
boe (Fw) has poles or zeros only in the right-half plane
[ 14 has poles only in the left-half plane

This follows the usual form, which implies that the direct transform of a time
function that is stable and zero for negative time will have all its poles in
the left-half plane (LHP).

Now we introduce the time shift X as illustrated in figure 2 and define

the shifted data as e'(t) = e(t - A). Because o1 (jw) = exjwéec(jw) and
@e.e.(w) = @ee(w), we can write the measured transfer function as
Ajw .
) 1 e Poc (Gw)
Ym (J w)' = - - _ - (8)
oo (Gw) | s, GGw)

As shown in figure 2, we can define the estimated describing function in
terms of the measured describing function, ?p(jw) = e'xjw?m(jw). And if we

assume that there is no modeling error, that is, ?m(jm) = Yq(jw), then a
theoretical expression for the estimated describing function is

. Aj -
e [ (Gu)

Yp () = (9)

+ . - -
Poe (jw) bee(jw) |,



Introducing the individual terms for @ec(jw) (see eq. (2)), we have

-Ajw . “AJuw eMwg Jw
S [y e, ]+ S —en 0)
+ q)ee (jw) ¢ee (Gw)

¥, Go) = (10

+ .
bee (jw)

The impulse response function of Y, is assumed to be zero for time less
than a value of Tp and, so long as A is less than or equal to Tps the

exijp(jm) has poles only in the LHP. Simplifying equation (10) with
this assumption, we obtain

term

. “Ajw | erive(jw)
Yo(Gw) = Yp(ju) + —=— — (11)
bee(Gu) | 0go(Gw)

+
The term @ee(w) consists of contributions from two sources: i(t) and n(t).

The maximum error can be determined by assuming i(t) = 0 (ref. 4). With this
assumption and using basic closed-loop relationships (ref. 11), let us define

Y. () o Gw)

o, (jw) (12)

1+ YYc ()

_ -Y_ (-jw) oy Gw)
Poe (Ju) = (13)
1+ YPYC(-jw)

o) Yo (-jw) 8y Gu) opp () .
® jw) = 14
en 1+ YpYe(-jw)

These definitions assume that Y.(jw) is minimum phase (i.e., contains no time
delay or zeros in the RHP). The case in which Y .(jw) is a nonminimum phase
will be illustrated at the end of this section.

Y. Minimum phase.- From the foregoing assumptions, which cover a variety
of piloted control situations, we find that

) [ A% G,
Y, Gu) = YyGw) - [

+ Y (3 1
e p(Jw)] (15)

.
eAJw¢nn(Jw)

10



where now the error is conveniently expressed as a functlon of @nn(Jw), he
excitation noise source. In equation (15), the terms [e Aju @nn(Jm)]+ and

+ .

onn (Jw) can be evaluated as shown in the following equation:

o]

R n(r + x)e-TJw dr [ 1
Ye

[Ron(0)e 7 de Gw)

¥, Ge) = Y, (Gw) * chjw)}e‘*j“ (152)

The contribution to the error term includes that portion of Rpy,(t) for values
greater than X\ (shaded area in fig. 4). It is seen that this contribution to
the error term will be reduced as 2
is increased. (However, this theo-
retical derivation holds only for
those values of X 1less than or

Rir +1)
nn

| c
I contr!lgzrtiOn equal to TP')
- | ﬁ%<i; - Equation (15a) indicates those
N | i conditions under which the identifi-
ey cation error will be small. For
Figure 4.- Reduction of error contribution with lT.lStance’ .nOte thaF if .A 15-p051-
X tive and if n(t) is white noise

- Ctiw (Rnp(t) is an impulse at t=0)}, then
j;Rnn(T + Ae J® 4t is zero and there will be no error in identification.

More generally, the identification error will be zero if

Rypn(t) = 0 for T > A (16)
where
A< Tp

This result appears to have significance for many applications. The most
important point is that when these conditions are met, a describing function
Yp (jw) within a feedback system can theoretically be measured with the system
exc1ted only by the internal noise n(t).

In most realistic situations, Rpp(t) will not be identically zero for
values of 1 > A. We will next show, however, that the identification error
can be reduced, and in some cases be made quite small, with more realistic
forms of Rpp(t). For example, assume that the noise n(t) takes the form

a(1) = Ke “ofT which, for small o, would be narrow-band (nonwhite) noise.
ThlS form agrees quite well with some experimental measurements of the pilot
remnant. (For instance, this exponential form with o = 5 sec agrees with
the measured n(t) in references 3 and 12.) With this form, we can evaluate
the constant factor of equation (15) as

-aA

[e Ajwégh(jw)]+ J;Ke-(k+r)ae—JwT dr
= e

dfn (Gw) h mee_aTe_ij dr
0

and arrive at

11



Yp(Gw) = Yp(ju) - e'“*[7;f§;7-+ YPCjw)}e”*j“ 7)

The error term on the right side of the equation is a function of the magni-

tude of the constant factor e-ak. As 2 increases and if o is large (near
white noise), then Yp(jw) ==Yp(jm). Conversely, if ) = 0, then the result
is identical to that shown in reference 4: Yp(jw) = -1/Y.(juw).

Y. Nonminimum phase.- Let us define the nonminimum phase terms as

C

et to represent any pure time delay in Y.(jw) and N_ (jw) to represent
any RHP zeros in Y:(jw). Then, by including these terms, in equations (12) to
(14), the estimated describing function becomes

[ YT GuN 5w /NG G0, [ 1
Y

_ : +Y(J'w)} (18)
o Orrediugs GuNg (/g Gw  Del9 P

Y, Ge) = Y39 -

Note that, in this case, if Rnn(T) = 0 for 1 > 1o, then Y _(jw) need
not have a time delay (and no time delay, ), is required in the analysis) in
order that the identification error be zero.

In this more general case, the identification error in equation (18) will
be zero if

Rnn(r) =0 for > A+ 1, (19)

where
A<T

P

The identification error can be made small if the autocorrelation function of
the internal noise Rp,(t) 1is negligible for values of 1 greater than the sum

of the time delays A + T.. We can also note that the term N_(-jw)/N_.(jw) is
representative of a Pade approximation to a time delay. Thus, any RHP zeros
in Y.(jw) will tend to act as an additional effective time delay and will
further reduce the identification error.

This analysis of the identification error indicates that the internal
noise n(t) need not be a hindrance to identification, but rather it will aid
in the identification of feedback control systems if the conditions of equa-
tion (19) are met. This analysis also may have application in many other
fields such as biology, economics, and chemical processes. Although these
other applications are not considered in this report, they do contain time
delays and some of the measurements can be made only with the noise introduced
within these systems to be identified.

12



APPLICATIONS AND DISCUSSION

The use of the computing technique outlined in this report will be
illustrated through the identification of two examples using simulation data
and one example using actual flight data. Each example will illustrate a dif-
ferent point. With example 1, the foregoing theoretical results will be com-
pared with experimental results. With example 2, a method for selecting the
time shift A will be illustrated. With example 3, an application using
actual flight records from Gemini X will be illustrated.

The simulated systems for the first two-examples are shown in figure 5.
The dynamics for these examples were simulated on a digital computer. The
output of a random noise program was appropriately filtered to obtain the
desired spectrum of n(t). The resulting dynamic records of e(t) and c(t)
were processed using the method described in appendix A. The experimentally
determined Yp(jw) to be presented for these simulated examples represents the
average values obtained from 12 separate 20-second runs,

—
IL y oMo
|

(a) Exoﬁ-w;)l-e- I.

C%De » 2w+l e S
-4

Estimate ’Y\p

———

Jw{jw+1)

pl eriw g

Figure 5.- System examples used to illustrate identification technique.
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Example 1: Comparison of Theory With Experiment

To illustrate the theory, the system in figure 5(a) was simulated and an
identification was made on the known model. The pilot model and controlled

element were Yp(jw) = 4e_0°3jw and Y. (jw) = 1/jw. The measurements were made

with no external disturbance, i(t) = 0, and with the only excitation being the
internal noise source, n(t). Two forms of the noise spectrum were considered:
an n(t) with a spectrum that approximates white noise to illustrate the con-

dition from equation (16) for no identification error, and with a spectrum

whose autocorrelation function is Ry, (1) = e—alr{ to illustrate the theoret-
ical results from equation (17) for an expected identification error.

Internal white noise.- For this case, the excitation source n(t) had a
spectrum near white noise. The time shift used in the computer processing was
taken at A = 0.2 sec. These conditions meet those specified for equation (16).
According to equation (16), the estimation technique will identify the actual

system, Yp(jw) = 4e70-330

Figure 6(a) presents the experimentally determined magnitude l? (jw)i
and phase angle < Yp(jw) as functions of frequency. Also shown for comparison
are the magnitude |Y,(jw)| and phase
angle €Y_ (jw) of the actual system.
The estimated amplitude |Y,(jw)|
varies 0.5 dB about the actual
20~ —=== Y liv) Actual value for frequencies to about
9,liw), Experment 9 rad/sec and the phase angle -{Yp(jw)
is within 0.5° of the actual value.
These differences appear to be within
the experimental accuracies of the
0~ simulation. These results substan-
tiate the theoretical conclusion that
it is possible to identify the
describing function of a system that
0 —-—--. - -y is excited by noise mn(t) introduced
within the system.

Amplitude l /Y\p(l"’)l dB
|
|
|
|
|
|
!
|
|
|
|
|
|
|
[
|
|
|
|

Internal nonwhite noise.- This
case uses the same control elements
-100 ¢ { b and the same value X = 0.2 sec as in
Frequency , w, rad/sec the previous case. However, the
assumed noise spectrum has a more

-5l

Phase angle
¢ Yp(]u)‘ deg
.

w
(@)

{a) n{1) = white noise

realistic form Rp,(v) = e For

this case, the theory (eq. (17))
predicts the following estimated

Figure 6.- Identification of example 1; T .
describing function:

X = 0.2 sec.

Y,(G0) = 427073 - 0.37Gu + 40703070200 (20)
- V
Yp(Jw) error
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This theoretical value of ?p(jw) is presented in figure 6(b) along with
the Yp(jw) obtained from the experimental data. Also shown for comparison

—_— ?p(iw), Theory

?p(j”), Experiment
20—
g —_—— Yt //
= ey L)
35— Ypl , Actual
o
o
S0~ g
& /
5L I I
oF— 1
- o
QU QL
o ©
=
S -
v 2 -50-—
3 VCL
2 o
o
- [ | i
100! | o
Frequency , w, rad/sec
(D) Rpqlr)ze-5l7l
Figure 6.- Concluded.
_____ (juw)
Yp il Actual
$ )z
Yo 0 N=.3sec
20— @ ———— ?p(i"‘). A=.05 sec /
g R //47////
’_57 o ‘—%—/
o= /
-
1ok / | |
1
PO -
{8 [
o o
g
L=
o L
2 =
.g ()—a
o W

Frequency, w, rad/sec

(a) Describing functions for X =.05 sec and X =.3 sec

Figure 7.- Effect of A on identification;

example 1; Ry, (1) = e

<517l

are the describing functions of the
actual system Yp(jw) and the negative
inverse of the controlled element
-1/Y.(jw). The experimentally derived
Yp(jw) in this figure is close to that
predicted by the theory. We can see
from this figure that the estimated
magnitude |Y,(jw)|is about 4 dB below
the actual value, |Yp(jw)‘, at the

lower frequencies and tends to give
the appearance of lead

(slope = 20 dB/decade) at the higher
frequencies., Overall, the estimated
magnitude tends toward |1/Yc(jw)| as
predicted by equation (17). The esti-
mated phase angle, however, agrees
quite well with the actual value.

If a time shift were not used in
this example, that is, if X = 0, then
the estimated describing function
would be Yp(jw) = -1/Yc(juw), shown by
the line in figure 6(b). It is inter-
esting to note that with A = 0, the
value of the constant factor in the
error term of equation (17) is

e_ax = 1. The value of this constant
factor with X = 0.2 sec, as shown in
equation (20), is e % - 0.37. There-

fore, for X = 0.2 sec the magnitude
of the error term was reduced
approximately 63 percent.

Figure 7 illustrates the effect
of XA on the identification error.
The control system and spectrum of the

. . . -5|TI
excitation noise source, R, (7)=e ' ,

are the same as in the previous case.
Experimental data, Yp(jw), are shown

in figure 7(a) for X = 0.05 and 0.3
sec. Also shown for comparison are
the actual system Y,(jw) and the
negative inverse of the controlled
element -1/Y.(jw). These experimen-
tal data illustrate the effect of )
predicted by the theory of equa-

tion (17). For small values of A, in
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5 this case X = 0.05 sec, the estimated

describing function Yp{(jw) tends
toward -1/Yc(jw). For larger values
of A, in this case X = 0.3 sec, the
estimated describing function is
nearer the actual system describing
?/' o) function.

%] o8
=)
[
m
3
O
@)
O
o

Amplitude ,
w
T

O//' Experimental data are presented

iﬁ . in figure 7(b) for several values of

o’/ . L ' : — A. These results are for one value

of frequency, w = 1 rad/sec. In this

figure, the experimental data are com-

pared with the value for the actual

o system (|Yp| ~ 12 dB and €Y}, ~ -18°).

//' This comparison illustrates that the
identification error decreases, as pre-
dicted by theory, to a value of

————— Yo o Actual A = 0.3 sec, which is equal to o
/ ——-—— 9, Theory (The theory, as noted previously, is
{ 0 9, Experiment valid only for X < tp.) The error

~

Phase angle, ¢ Yoo deg

o
o
T

. \O

in |§p[ is seen to increase for
values of X much larger than =

Hoos 3 3 4 L L This is to be expected because Qp(jw)

Time shift , A, sec

cannot properly model Yp(jw) with

(b} \dentification error for w =1 rad/sec A > T These dataAindicate that the

minimum error in |Yp| occurs near a

Figure 7.- Concluded. -

value of A A Tp . The error in the

phase angle €Y, is also seen to be

very small at A ~ 1_. As shown by this example, the value of X should be
near the time delay Tp, to minimize the error identification.

We shall now recall an interesting point previously discussed (with
eq. (2)) that can now be reinforced with experimental data. That is, the mini-
mization of the identification error, as we have shown above, is not equivalent
to finding the minimum value for the squared residual €2(t) integrated over a
a given run length. The following table presents the experimentally derived
values of the fit term /fe?(t)dt, nor-
malized with respect to JSc2(t)dt, as

Time shift A, Normalized fit term a function A. This table shows that

2 2

5e¢ fe?(r)dt//c” (t)dt the minimum value for the fit term is
0 0.02

1 19 not at A = Tp = (0.3 sec, but rather

: ) is at A = 0.° This is to be expected

.2 .25 .

3 7 because with A = 0 then

2 o8 Yp(Jm) = -1/Y.(jw) and there is essen-

.5 .31 tially perfect correlation between

e(t) and c(t).
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The fact that the minimum value for fit term /fe2(t)dt appears at A = 0
can lead to an erroneous interpretation in selecting the best value for .
For instance, in previous studies (refs. 5-7), A was selected by using that
value which gave the best correlation between e(t) and c(t) (i.e., the mini-
mum value for JSe?(t)dt). This previous method of selecting A is unsatis-
factory, however, because as we have just noted, if n(t) >> i(t), then the
best correlation is with A = 0 and, in this case, Yp(jw) = -1/Y.(jw). An

alternate method of selecting A will be illustrated by the following example.

Example 2: A Method of Selecting the Time Shift

The previous example pointed out that the time shift X should be near
the time delay Tt, to minimize the identification error. The time delay =
may be approximately known in some situations (e.g., ref. 3) but, in general,
its value will be unknown and will depend on the particular piloting task.

This example illustrates one method of selecting X and will consider
identification of the system shown in figure 5(b). The excitation noise
source is the same as used in the previous case, Rp,(t) = e-5!Tl and i(t) = 0;

however, different forms for the pilot model Yp(jw) = 2(jw + l)e'O‘Sjw and

controlled element Y.(jw) = 1 were chosen to demonstrate the iden-

jo(jw + 1)
tification of more complex dynamics. We will assume in this illustration that

Yp(jw) is unknown. The objective will be to estimate the value of p and

then use this value for XA to obtain a best estimate for ?p(jm).

For this example, the following procedure was used to estimate o and
thus, select .

1. Plot the estimated describing function for a selected value of A.

2. Determine a transfer function that fits the plot, that is,
~Tr]Ww
Yp(jw) ~ (Ky + Kyjw)e P77 ete.

3. Note the value of estimated p from step 2.

4. Repeat steps 1 through 3 until a value of X approximately equal to
the estimated p is obtained.

The estimated describing cunctions for example 2 are presented in
figure 8 for X = 0.2 and 0.4 sec. Also shown for comparison is the describ-
ing function for -1/Y.(jw). These experimental data for X = 0.2 and
0.4 sec follow the trends predicted by theory. The curve for the high value
of ) (as compared to the curve for the lower values of 1) tends away from
-1/Ye(jw). It was found for these data that any value of A between A =~ 0.3
sec and 0.8 sec resulted in approximately the same describing function as

shown for A = 0.4 sec. This estimated describing function can be approxi-
T, jw
mated by a transfer function of the form Yp(jm);w (Ky + Kojwle P°" . The

17



40— —— %(i“’), X =.2 sec

?p(iw) X = .4 sec
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Figure 9.- Comparison of estimated T with A;
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example 2.

Phase angle,

Amplitude ,

estimated 1, values from fitting
this transfer function to the plots
(e.g., fig. 8) are presented in fig-
ure 9 for several values of A. It
is seen that X 1is equal to the
estimated time delay, Tp, at A =~ 0.5

sec. Therefore, X = 0.5 sec should
be selected for use in this example
identification analysis. It is seen
that for this example the method
works well for estimating the actual
Tp.

Figure 10 compares the estimated
describing function using X = 0.5
sec with the actual describing func-
tion for example 2. Both the magni-
tude and the phase angle of the
estimated describing function are
seen to be near these values for the
actual system. For this case, with
A = 0.5 sec, the theory of equa-
tion (17) predicts that the identifi-
cation error in magnitude will be

e ™ = 0.08. The experimental data
shown in figure 10 appear to be
within this 8-percent identification
error as predicted by the theory.

’Y\D(J“’), A= 5 sec

w
(@]
]

_——— Yp(lw’, Actual

n
O

s

|9, a8

¢ Yp(]w)' deg

I A\ I
\ 10
Frequency , w, rad/sec

—mo%

Figure 10.- Comparison of Y with Y 5
example 2.



Example 3:

Flight Test Results From Gemini X

Flight data from Gemini X were analyzed to illustrate the application of

this identification technique.

In analyzing flight-test data, it is best to

select a section of the record that contains disturbances external to the

pilot.

disturbances will tend to reduce the error in identification.

As noted earlier in the discussion following equation (2), external

The retrofire

maneuver is a case in which external disturbances are introduced due to the

unsymmetric ripple firing of the four retrorockets.

The relationship of the

pilot control task, the jet control system, and the disturbances during retro-
fire is illustrated schematically in figure 11.

e M w

Jet system Disturbance

|
Ir —L -
jw Jw

e
<

A 4

Figure 11.- Pilot describing function and flight control system; example 3.

During retrofire, the pilot controls the attitude about each of the three

axes.
Retrofires
S |

S ————— |
SR |

Y
T o
I3 @
= o
5=
E
=2
—" }-Zsec
3
¢ |
o
I}
2o
@3
°© 2 — ! ] ] ] I ] ]
B:O Ir“l T I 1 I 1 T T T 1 {
s ©
<
o
(&)
-zl | ] | I | | | | | | | [

Figure 12.- Time history of yaw control task
during retrofire.

There is no control coupling between these axes, and the pilot appears

to treat them as three separate tasks.
0f the three axes, the control about
the yaw axis contained the best consis-
tent correlation between attitude
deviations, e(t), and control stick
deflections, c(t). A time history of
the recorded yaw control data is pre-
sented in figure 12. These control
data will be used to illustrate the
measurement of the pilot describing
function during the retrofire of the
Gemini spacecraft. (It should be
emphasized that this was a normal
retrofire maneuver and the astronaut
had no prior knowledge of this
identification attempt.)

The pilot describing function
obtained for the data of figure 12 are
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presented in figure 13. Curves of

—_ J tjw) 2= ~
ip.'x ° magnitude, |Yp(jw)|, and phase angle,
20— —_ Yp(l“’), x=.6sec _— . .
Q {Yp(jm), are presented as functions
= of frequency for A = 0 and 0.6 sec.
Za Also shown for comparison is the
- 0__‘______~,,p' —_— describing function® for ~1/Y.(juw).
3 - The significance of this line was
é -lo- 7 noted previously. The theory predicts
a ~ that for X = 0, the estimated
-zob l I describing function ?p(jw) will tend
L EE===C — T 7' toward -1/Y.(jw) as illustrated in
§‘§ \\\\\ figure 13. However, for this flight
w3 -50F ~ pd situation, Y,(jw) does not coincide
éo—a A / P
. R exactly with -1/Y.(jw) because of
00l ! AN | external disturbances due to the

firing of the retrorockets and jet
control system.

Frequency, w, rad/sec

Figure 13.- Identification of pilot describing
function; example 3. .
For X = 0.6 sec, the estimated
describing function Y,(jw) tends
away from the curve of -1/Y.(jw). Any value of X from about XA = 0.3 to
0.7 sec resulted in approximately the same describing function as shown for
A = 0.6 sec. This estimated describing function can be approximated by a
-Thjw
transfer function with a constant gain and a time delay, Yp(jw)sw Ke pJ .
As noted previously, the value
1.0 J/ of A that will minimize the identi-
i / fication error is dependent on the
/ effective time delay of the pilot,
. / T,. For these data, the procedure
described previously was used to
s determine Tp and, thus, select A.
Q\X}\4}_417%;’4},4y’4y/0 With this procedure, 1, was esti-
mated by fitting the transfer func-
/ tion to the plots for several values
4 of A. These results are illustrated
in figure 14 where the estimated <
/ values are presented as a function
s of . It is seen that XA 1s equal
/ to the estimated time delay, 1,
/ at A a 0.6 sec. Therefore, ¥ = 0.6
! ! l | sec was selected for use in this

]
0 .2 49 6 .8 1.0 - R - .
Time shift, A, sec identification analysis.

Estimated T S€C
o)
T

N

One promising feature in analyz-
Figure 14.- Comparison of estimated 71, with ing the flight data is that the esti-
A; example 3. mated describing functions are

SThe describing fﬁhctibﬁ for the jet control system Y. (jw) was
estimated from the flight data.
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relatively insensitive to the exact value of the time shift, A. For the
estimated pilot describing functions (e.g., fig. 13), the plots are approxi-
mately the same for values of A from about 0.3 to 0.7 sec (the estimated =
remained the same at about 0.6 sec). It appears that the exact value used £olr
A is not critical in this application of the identification technique.

The estimated describing function for A = 0.6 sec (fig. 13) represents
a constant gain system with an effective time delay. This result, although
not directly comparable to the results from previous studies, appears reason-
able. For instance, with a rate command system, which approximates the control
system used in this situation, reference 1 has shown that the pilot describing
function will be essentially a constant gain system with a time delay. The
value 1, for the three-axis flight data is higher than the value from the
single-axis data in reference 1. However, other studies such as reference 13
have also shown higher values of 1, when the pilot is involved in the com-
plete task of monitoring the instrument panel and controlling about three
separate axes.

Further analysis of this flight data is presented in appendix B. This
appendix illustrates how the describing function of the pilot/control combina-
tion can be identified using the technique outlined in this report. This
illustration is interesting because it presents the identification of an
unknown system (i.e., pilot/control system) using only its own internal noise
source for excitation.

CONCLUDING REMARKS

This report has shown that in measuring pilot describing functions the
identification error due to the correlation of the input signal with the
pilot output noise can be reduced by shifting the input data during the com-
puter processing by an amount equivalent to the pilot time delay.

Both theory and experimental data have shown that the identification
error can be made small if the autocorrelation function, Rpp(t), of the
internal noise source (pilot remnant) is negligible for Tt greater than the
sum of all effective time delays through the control loop (pilot plus con-
trolled element). This finding has significance in general systems identifi-
cation because, when these conditions are met, it is possible to measure the
describing function of a system with feedback using only its own internal
noise source for excitation.

Representative data selected from the retrofire portion of the Gemini X
flight were analyzed using the technique outlined in this report. These
results demonstrate the feasibility of identifying the pilot describing
function from routine flight-test records.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan. 15, 1969
125-19-01-42-00-21
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APPENDIX A
TIME DOMAIN ANALYSIS AND COMPUTER PROCESSING

In this appendix, we will first use time domain analysis to outline the
standard cross-correlation method (refs. 4 and 8). We shall then introduce
the time shift X and the computer processing equations used for the results
in this report. The reduction in identification error due to A will then
be pointed out using these time domain equations. And, finally, we will
discuss a modification of these computer processing equations to account for
any data bias.

Standard Cross-Correlation Method

Let us consider analysis in the time domain in which the linear input-
output relationship can be expressed in terms of a convolution integral

tn
c(t) = [ "hp(r)e(t - t)dr + n(t) (A1)
o

The hy(t) is the pilot impulse response function that is assumed to be zero
for v <0 (i.e., hp(r) is a real system) and also zero for 1 > t; (i.e., a
finite memory time, tp). A simple discrete approximation of equation (Al),

to allow digital computation, is
M

c(k) = At EE: hp(m)e(k - m) + n(k) (A2)

m=0
where At is the discrete sampling time. The set of equations (AZ) can be
written in vector-matrix form as

c = EEP +n (A3)
where
e (ko) eko - 1) . . . ek - M
elko + 1)
E = At
e(X) .. . e(K - MIJ
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_ — _ _
hy, (0 ¢ (ky) (k)
hy, ) clko + 1) n(kg + 1)
hp = hp(z) c =lclkgy + 2) n = [n(ky + 2)
—hp (Mz- _c (X) _J _n (x) i

An estimate of hp can then be made, using standard least squares, by the
formula

hp = (ETE)T'ETc (A4)

We should point out that the matrix to be inverted, ETE, contains terms
that represent discretg measurements of the autocorrelation function Ree(T),
and that the vector Elc contains terms that represent discrete measurements
of the cross-correlation function Rec(t). For instance, the vector Elc can
be written in terms of the cross-correlation function as -

K
Y ee k) Rec (0)

a—

k=k0

K
;ﬁ e(k - 1)c(k) Rec (1)

k=ko
Be=| ~| (AS)

K
}: ek - M)c(k) Rec (M)
=Ko
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Use of a Time Shift in Computer Processing

The time shift A is introduced into the computer processing by shifting
the input data e(k) a discrete number of time shifts L, where A = L At.
The linear pilot model is then expressed as

M
c(k) = At }j hp(L + m)e(k - m - L) + n(k) (A6)
m=o0

This form assumes that the impulse response hp 1is zero for time less than
A. This form also assumes a memory time of tp = A + M At. For the results
in this report, M = 9 and At = 0.05 sec. (Larger values of M were also
tried with no significant changes in the results.)

Using the least-squares formulation, the impulse response function of the
pilot was determined by the following matrix inversion on a digital computer:

-1
B 1 [ x K K [k
hy (L) Eje%k¢) ZJe&—Ue&—LU C Z:e&—UeQJLU Ejeﬁ—”c&)
K=k K=o K=k K=k
K K X _
Ay (L+1) Sﬁe&-LUe&—U Eje%b1¢) o ; e(k-1-LYe(k-M-L1) | | ) e(k-1-Le(k)
keko K=k K=k =
= (at)7!
K K K ¢
fip (L+M) E:e&MJJﬁhL) E:eRJLUeRJ-U . Z €2 (k-M-L) Z e (k-M-L)c (k)
L J k=kg k=kg k=kq k=ko

(A7)
This time domain solution was further transformed into the frequency domain
using the following approximation for the Fourier transform:

M
Yp(iw) = & 213 4t Z hy (L + me™” Atjw (A8)

RTS8 Yn(jw)

Reduction in Identification Error With Time Shift

In order to show, using time domain analysis, that the time shift A
reduces the identification error, we can write equation (A4) as

- Ten-1-T
hp = h, + [E'E] "E'n (A9)
L ———
error
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The identification error, shown above in vector form, is due to the correla-
tion of e(k) with n(k). The terms in the vector ETE can be regarded as
discrete values of the cross-correlation function Rg,(T).

_-K - — —
}: e(k)n(k) Rep (0)
k=kg
K
j;1 e(k - 1)n(k) Rep (1)
k=ko
E'n = ~ (A10)
K.
ek - Mn(k) Ren M)
| k=ko 4 L i

If Rgp(r) is nonzero for 1 > 0, then the terms Ren(m), m > 0, will be non-
zero and there will be an identification error.

Now, introducing a discrete number of time shifts L, such as used in
equation (A7), the vector ETE_ becomes

E: e(k - LIn(k) R, (L)
k=kg
K
}j ek - 1 - L)n(k) Rep (L + 1)
k=k,

tr
|

1l

2

(A11)

K
E: ek - M- L)n(k) Re (L + M)

 k=ko J L i

We can see that this use of the time shift removes the terms Rgp(m),
O0<m< L, and adds the terms Rgy(m), M<m <M + L. The terms that are
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added generally are smaller than the terms removed; thus, the use of a time
shift L, or the equivalent A, reduces the identification error. (Time shift-
ing will not significantly alter the matrix ETE.) Further note that the
identification error will be zero if Rgp(m) is zero for values of m > L.

Computer Processing With Data Bias

The data c(k) and e(k) obtained from routine flight tests will usually
contain some type of long-term variation about which the short-period dynamics
are to be estimated. (See, for instance, the flight-test data in fig. 12.)
There may be a bias or drift in e(k) because of instrumentation errors or
because the pilot may be controlling about some nonzero value. There may be
bias in c¢(k) because of instrumentation errors or because the pilot must hold
some nonzero offset with the controller (e.g., if the vehicle is out of trim).
In the analysis of the flight-test records for this report, a bias term and a
drift term were added to the foregoing formulation so that

M
c(k) = by + b1k At + At E: hp(L +m)e(k - L - m) + n(k)
m=0
The estimated constant bias term Bo and estimated drift term Bl, along
with the estimated impulse response function h,(m), were determined by the

least-squares solution. This new formulation required the inversion of an
M + 3 square matrix instead of the M + 1 square matrix shown previously in

equation (A7).
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APPENDIX B
IDENTIFICATION OF THE PILOT/CONTROL DESCRIBING FUNCTION

The describing function of the pilot/control combination has been used
extensively (e.g., ref. 1) to analyze the closed-loop dynamics of piloted
systems. This appendix illustrates the use of the technique outlined in this
report to identify the pilot/control describing function. This illustration
will use the Gemini data presented previously in figure 12.

The describing function ?x(jw) to be identified is shown in relationship
to the pilot and the control system in figure 15. This describing function

Jet system Disturbance

| J v
J—r o J%

€

h 4

e-Aw

Figure 15.- The technique for identifying the pilot/control describing function.

was measured' between the attitude error signal e(t) and the attitude rate
signal §(t). The Bode plots obtained from these data are presented in

figure 16. Curves of the estimated describing function Yx(jw) are shown for
A =0 and 0.7 sec. Also shown for comparison is the Bode plot for the nega-
tive inverse of the feedback path, -jw. The theory predicts that, for X = 0,
the estimated describing function will identify -jw because, in this case,
there are no disturbances external to the measured describing function. As

1Tt is 1nterest1ng to observe that the identification of the
pilot/control describing function required only a single channel of recorded
data. The output signal used in the computer processing was the recorded yaw
rate, Y(t). The input signal was also determined from this same recorded
data as

t
e(t) = -I i(T)dT + bias + drift
o

where the unknown bias and drift are accounted for by the method shown in
appendix A.
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shown in figure 16, the curve for

20— — §, U@, X=.7 sec . . . .
G @ r-0 A = 0 essentially coincides with the
o o curve for -jw.

S
i - ~

o ?”’ | For increasing values of A, the
e estimated describing function tends

2 away from the curve of -jw. Any

§ value of A Dbetween 0.4 and 1.0 sec

20 | I resulted in approximately the same
Bode plot as shown for X = 0.7 sec.
0 T — . L .

The estimated describing function can
g8 be approximated by a describing func-
5 57 -50 tion with a constant gain Ky and a
£ ——em time delay 1y Yx(jw) =~ Kge TX7¢,

qooF—‘_ The estimated values for 14 are

’ Frequency , w, rod/sec presented in figure 17 for several
values of X. We can see that ) 1is
equal to the estimated 14 at
A ~0.7 sec, so ) = 0.7 sec was

Figure 16.- Identification of pilot/control B .
g selected for this analysis.

describing function.

From the estimate Yy (jw), we
can determine the describing function
for pilo;/controlled element combina-
tion, Ych(jw). The describing func-

|0F 7 tion ?X can be combined with the
/ integration, 1/jw, as shown in
7 figure 15, to obtain
8l /
O\O\O-—QLO——O—’O aa Yx(jw)
Q / YpYC(Jw) = 'J—w
Lo 7
. 4 :
= For the results from figure 16, the
5 g
s Aar J/ estimated describing function is
s3] .
/ Yy Gu) ~ 1.3¢7 273 5o that
L /
' / -0.7jw
55 i 1.3¢
| | | ] |
0] .2 4 6 .8 1.0
Time shift, X, sec This result appears reasonable. From
previous studies such as reference 1,
Figure 17.- Comparison of estimated 1, with ). it has been shown that for a variety
K o~ TxJu
X

of controlled elements the pilot will control so that Ych(jw);w m
This form is the same as found in the actual flight results. The actual value
for the gain (a crossover frequency, K., of 1.3 rad/sec) is lower than pre-

dicted in reference 1 and the value for the effective time delay (tx a 0.7 sec)
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is higher than predicted in reference 1. Again, it is reasonable to expect
(see refs. 10 and 13) that these differences can be attributed to the fact
that in reference 1, the pilot was controlling only a simple single-axis task
whereas, for the actual flight data, the pilot was controlling about three
axes and monitoring the complete instrument panel.

>
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